

Technical Memorandum No. 33 - 220

Summary of the Functions and Capabilities
of the Structural Analysis *stem

co P f o g d

Theodore E. Lang

v
M. E. Alper, Manager
Applied Mechanics Section

JET P R O P U L S I O N L A B O R A T O R Y
C A L I F O R N I A INSTITUTE O F TECHNOLOGY

P A S A D E N A . C A L I F O R N I A

June 15, 1965

Jet PTpulsion Laboratory
California Institute of Technology

Prepared Under Contract No. NAS 7-100
National Aeronautics & Space Administration

JPL TECHNICAL MEMORANDUM NO . 33-220

CONTENTS

II . Description of the Structural Analysis System Program 2

111 . Capabilities of the SAS Program 8
A . Multiplication Subprogram (MULT) 9
B . Addition and Subtraction Subprogram (ADDS. SUBS) 9
C . Transposition Subprogram (FLIP) 9
D . Pre- and Post-Multiplication Subprogram (WASH) 9
E . Choleski Decomposition Subprogram (CHIN) 9
F . Simultaneous Equation Solution Subprogram (CHOL. ITER) . . . 10
G . Root Subprogram (ROOT) 11
H . Second-Order Differential Equation Subprogram

(LOCI. DEQS) 11
I . Root Extractor Subprogram (POWR) 12

iV . Review of Objectives in Program Development 14
A . Techniques of Achieving a "Balanced" Program 14
B . Methods of Achieving Program Versatility 17
C . Methods of Insuring Program Reliability 18

V . Role of the Engineer in Structural Analysis Applications

References . 21

of the SAS Program 19

FIGURES

1 . Triangular grid array of a spherical shell 2

2 . Node deflections and forces 2

subprogram of the SAS 3
3 . Generated data and library of elements in the BlLD

4 . Generated data and library of elements in the BUKL
subprogram of the SAS 3

5 . Manipulative subprograms of the SAS 4

6 . Example pseudo instruction 5

7 . Core. disk file. and tape assignments of SAS on the
JPL computer (IBM 7094) 7

JPL TECHNICAL MEMORANDUM NO . 33-220

FIGURES (Cont'd)

8 . Illustrative multiplication operation 9

9 . Discretization of nonharmonic force 12

10 . Triangular grid array for quarter shallow shell 12

11 . Triangular array of 20-deg shell sector 12

12 . Illustration of matrix coding technique 15

13 . Matrix addition using coded elements 15

14 . Structural idealization 16

15 . Pressure and thermal loading 19

.

J P L TECHNICAL MEMORANDUM NO. 33-220

FOREWORD

The Structural Analysis System (SAS) Computer Program described
in this report was developed by Philco Corporation, Western Develop-
ment Laboratories (WDL), Palo Alto, California, under contract to
the Jet Propulsion Laboratory, Pasadena, California (Contract No.
950321) .

The program was developed to solve complex structural problems
by the analytic techniques of the direct stiffness method. The develop-
ment work by WDL was supervised by Dr. P. R. Cobb with Dr. R. J.
Melosh as project engineer. The support effort by JPL was under the
supervision of R. R. McDonald and Dr. M. E. Alper with T. E. Lang
as project engineer.

V

JPL TECHNICAL MEMORANDUM NO. 33-220

ABSTRACT
gsla\

The functions and operations of a large capacity Structural Analysis
System Computer Program developed to analyze frame and shell-type
structures are described. Included is a summary of the capabilities of
the program and a discussion of certain of the problems encountered
in development of the program. The participation of engineering per-
sonnel in the setup and running of a typical shell problem is outlined.

1. INTRODUCTION

The purpose of this report is to describe the functions
and capabilities of the Structural Analysis System (SAS)
Computer Program that was developed by Philco Cor-
poration, Western Development Laboratories (WDL),
under contract to the Jet Propulsion Laboratory. The
original task outlined in the contract was to develop a
structural analysis program that would have the capabil-
ity of predicting the static and dynamic behavior of com-
plex shell-type structures. By complex, here, is meant
shell structures that may be material-anisotropic, lami-
nated as in sandwich construction, locally stiffened,
and/or geometrically irregular. Hence, included are shell
characteristics that are not amenable to closed-form solu-
tions or finite difference or numerical integration tech-
niques. Therefore, an approximate method of analysis
was selected which has built-in solution convergence to
exact answers as the structural idealization is refined.
This method of analysis uses the “finite-element” concept
and an energy approach. It entails representing a struc-
ture by an array of substructures (finite elements) that
are selected to be consistent with the geometric character

of the original structure. For example, for singly and
doubly curved shells, a flat triangular plate element is
a logical element to use in the idealization.

Using the finite element concept there are two ap-
proaches to setting up a problem, namely, the force or
flexibility method and the displacement or stiffness
method (Ref. 1 and 2). Based on its simplicity, efficiency,
and generality, the stifhess method was selected and a
computer program was developed to solve shell problems
using the IBM 7094 computer. Because of the require-
ment for having the capability to analyze stiffened shells
and layered structures, several elements other than the
triangular shell element were added to the program ele-
ment library. Thus the final program is applicable in
analyzing a wide spectrum of structural types including
truss and frame structures, shells of revolution, and com-
binations of these.

In establishing a program development plan compatible
with contractual requirements, it was decided to divide

I

I

1 I

JPL TECHNICAL MEMORANDUM NO. 33-220

the effort into sequential tasks (contractual phases) so
that the initially developed programs could be assessed
before extending the work scope. This approach was prac-
tical because the finite element representation had not
been developed so it was assured that an adequate
shell representation could be formulated. In this report,
the program developed under Phases I, la, and I1 of the
contract is described. The intention here is to present an
overall picture of the program and its capabilities without

delving into details on mathematical algorithms, computer
operations, input-output format, etc. For information of
this type, two documents have been prepared by WDL
(Ref. 3 and 4) which are updated as changes and exten-
sions to the program are made. One additional document
(Ref. 5) that complements the WDL reports and this
report summarizes the test problems and associated
input-output data that were used in final checkout of
the SAS program.

II. DESCRIPTION OF THE STRUCTURAL ANALYSIS SYSTEM PROGRAM

The computer-oriented Structural Analysis System
(SAS) is based upon the analysis techniques of the direct
stiffness method. In applying this method a given struc-
ture is idealized by an array of subelements that approxi-
mate the local structure they represent. For a shell
structure, the flat triangular shell element having mem-
brane and bending stiffness is well suited for the ideal-
ization. Hence, in applying this method, any shell is
approximated by a polyhedron of triangles in which dis-
placements and forces are specified or determined at the
apexes or nodes of the triangles (see Fig. 1).

unknown or prescribed at each node (see Fig. 2), and
if unknown are calculated in solving the problem. The
number of nodes is dependent on the triangle grid array
selected to represent the structure. For a fine grid array,

If a triangle is arbitrarily oriented with respect to a set
of overall coordinate axes, then six independent variables
are required to describe the deflection of a node (three
displacements and three rotations). These deflections or
their complement in forces and moments are either

4=

-TYPICAL NODE

Fig. 1. Triangular grid array of a spherical shell

(a) DEFLECTIONS X

% (b) FORCES

Fig. 2. Node deflections and forces

2

JPL TECHNICAL MEMORANDUM NO. 33-220

which is generally required in shell representations, a
4. Gravity loading vectors from imposed acceleration large number of nodes results. -4n upper limit on the

number of unknowns of the problem is six times the num-
ber of nodes. Hence, a typical shell problem inherently 5. System mass matrices for uniformly distributed
involves solving a large number of simultaneous equa-

states,

mass, and the
tions which easily can- exceed core capacity of even -the
largest modem digital computers. Therefore, in the SAS 6. Small deflection buckling stiffness matrices.

it was necessary to supplement in-core storage with mag-
netic tape and/or disk storage. Implementing this data-
storage technique requires data to be input and output
from the core of the computer in convenient block sizes
as the calculations are performed, in order not to exceed
core capacity. Thus, certain of the SAS subprograms use
the tape-core coupling technique in which data is input
in small blocks from tape to core. As the calculations are
completed, the output is stored on tape in like manner
or retained in core if it fits and is part of the next calcu-
lation. With this arrangement there is virtually no limit
on the amount of data storage capacity; however, the
core-tape coupling involves significant data handling and
transfer times.

For some manipulative operations, the amount of data
normally is small so the operations can be performed
in-core. This, of course, restricts the applicability of the
algorithm; however, in many instances there are alternate
schemes of combating this capacity problem, or the prob-
lem is not acute. In the SAS, for example, the subprogram
used to compute characteristic roots in an eigenvalue
problem is limited to in-core operation. However, even
within this constraint, 130 roots and vectors can be
computed simultaneously, which for most problems, is
adequate.

To completely automate a structural analysis, the com-
puter program must be set up to perform two basic
functions; namely, generate the stiffness and stress ma-
trices and loading vectors, and then perform the manipu-
lations necessary to solve for the unknowns.

This generation phase is represented by two subpro-
grams or links in the program library. These links have
Lade names BILD and BUKL and involve several gen-
eration functions which are outlined in Fig. 3 and 4.

As noted in Fig. 3, the structural elements in the library
of the generation subprograms include the beam, bar,

GENERATION SUBPROGRAM
RlLD

1

pq
LOAD VECTORS

I- I - I- - -
SHEAR BEAM,
BAR, TORQUE

PRESSURE I MASS 1
I ' I

k z r i TRUNCATED

Fig. 3. Generated data and library of elements in the
BILD subprogram of the SAS

I GENERAT ION SUBPROGRAM
BUKL 1

The first function, the generation phase, is performed L Z k l -
MATRICES

STIFFNESS

by the computer only if geometric and materials data are
input to the program. From these input data the SAS
program generates the following:

I MATRIX 1
1. Element stiffness and stress matrices,

2. Fixed node forces due to temperature profiles and
gradients,

BEAM, BAR
TORQUE TUBE

TRIANGULAR
SHELL FACET

3. Equivalent node forces due to uniform pressure Fig. 4. Generated data and library of elements in the
BUKL subprogram of the SAS loads,

3

J P L TECHNICAL MEMORANDUM NO. 33-220

MANIPULATIVE SUBPROGRAMS
OF THE SAS

0 PER AT IONS
ON

SIMULTANEOUS
EQUATIONS

MATRIX
ALGEBRA

I t I
I I I I SOLUTION OF I

SIMULTANEOUS
EQUATIONS BY

CHOLESKI METHOD
M U LTI PLICATION

I 1 I
SOLUTION OF

SI M U LTA N EO U S
EQUATIONS BY

IT E R AT IO N
(ITER) LTC

ADDITION AND
SUBTRACTION

(ADDS)
(SUBS) H LT C

I 1

I I I

PRE AND POST
MU LT I P L I C AT I ON
PARTITIONING

(WASH) i LT C

I I
TRIANGULAR

DECOMPOSITION
(MATRIX SQUARE ROOT)

CHOLESKI METHOD
(CHIN)

SOLUTION OF
CHARACTER I ST I C

EQUATIONS BY
JACOBI'S METHOD

(ROOT)

I
FUND AM ENTAL

ROOT OF CHARACTERISTIC
EQUATIONS BY

POWER METHOD
(POWR)

TRANSFER
CHARACTERISTICS OF

SECOND-ORDER
DIFFERENTIAL

EQUATIONS
(LOCI)

I

SOLUTION OF
SECOND ORDER
DIFFERENTIAL

EQUATIONS
(DEOS)

3c CODE NAME GIVEN TO THE SUBPROGRAM
*it LARGER-THAN-CORE CALCULATION CAPABILITY (LTC)

I
DATA

HANDLING

SORTING OF MATRIX
ELEMENTS

(ROWS)
(COLS 1
(SORT) LTC

DATA INPUT AND
OUTPUT
(READ)
(INKS)

LT C

CODING AND
DECODING OF

MATRIX ELEMENTS
(CODE)
(DECO)

I MATRIX TRANSFER: I
CORE TO TAPE

(SAVE)

T A P E TO CORE
(FILL) I

INPUT DATA
ERROR

DIAGNOSIS
(CHEX)

Fig. 5. Manipulative subprograms of the SAS

JPL TECHNICAL MEMORANDUM NO. 33-220

torque tube, triangular shell facet, shear beam, and trun-
cated cone; these may be used in any combination in a
structural idealization.

The second function of the SAS is to manipulate
mathematically the generated data to determine the
unknowns of the problem. This manipulative phase is
currently made up of 17 subprograms. Five of the sub-
programs perform standard matrix algebra; namely,
multiplication, addition and subtraction, transposition,
triangular decomposition, and row-column partitioning.
Five others perform functions on simultaneous equations.
Included here are subprograms for:

1.

2.

3.

4.

5.

Solving simultaneous algebraic equations,

Finding roots and vectors of the dynamic matrix
equation,

Calculating root loci for a set of simultaneous equa-
tions under a variable change,

Solving the second order matrix differential equation
with discretized or certain functional forcing func-
tions, and

Calculating the fundamental eigenvalue and asso-
ciated vector of a matrix (used in the buckling
calculation).

The seven remaining subprograms of the manipulative
set are special-purpose programs for input and output of
data, and for carrying out manipulations particular to the
data format used in the S.4S. The 17 manipulative sub-
programs are listed in Fig. 5, together with information
on subprogram identification and data-size restrictions.
The subprograms having “serial option” blocks are set up
to perform multiple operations in the function represented
by the parent block. For example, serial multiplication is
a subprogram option that allows sequential multiplication
of matrices without writing separate instructions for each
step.

Sequencing the computational steps to carry out a prob-
lem solution is accomplished by writing a set of instruc-
tions. This set of instructions is called the “pseudo
instruction program.” Conceptually, pseudo instructions
are quite similar to FORTRAN instructions, the only
difference being that a pseudo instruction calls for a
matrix operation rather than a discrete operation. One
pseudo instruction is required for each matrix operation
that is to be performed (excepting the “serial” options).
For example, to multiply two matrices, one pseudo in-
struction is needed which contains information on where
the two matrices are located (either in core or on pre-
scribed tapes), the operation to be performed (multipli-
cation in this instance) and where the resultant (product)
matrix is to be stored (in core or on tape). The actual
pseudo instruction for this operation would be of the
form of Fig. 6.

Interpretation of this instruction is: read into core
matrix KAR001, which is on Tape 9, Location 1, and mul-
tiply it by matrix MRR001, which is in core. Designate
the product matrix PRROOl and store it on tape 10, loca-
tion 3.

A Master Intelligence System (MIS) in the core of the
computer is the monitor system that controls the execu-
tion of the pseudo instructions. For the multiplication
operation outlined above the procedure is the following:

1.

2.

3.

Upon completion of the pseudo instruction prior to
multiplication, control is given to the MIS.

MIS reads the next pseudo instruction (multiplica-
tion instruction) from the pseudo program tape and
determines the tapes that will be needed and the
function to be performed.

MIS positions all of the tapes involved (tape 9 at
location 1, tape 10 at location 3), so that the next loca-
tion on the tape is either the start of the input data
for the operation or space for the output.

Fig. 6. Example pseudo instruction

5

JPL TECHNICAL MEMORANDUM N O . 33-220

4. MIS then locates on the SAS library tape the sub-
program that performs the operation (MULT), and
brings this subprogram into core.

5. Control is then shifted to this subprogram (MWLT),
which calls for the input matrices (KAR001,
MRROOl), performs the calculation (multiplication),
and locates the resultant matrix (PRR001) in core or
on tape as specified.

6. Control is then returned to MIS and the process is
repeated with the next pseudo instruction.

Generally, a pseudo instruction program for structural
analysis varies little from problem to problem, so that once
an efficient program is written it becomes a standard part
of the input data for any structural problem.

Noting the example pseudo instruction given previously,
it can be observed that specification of data storage tapes
is an integral part of each pseudo instruction. This option
requires greater user knowledge in setting up a pseudo
instruction program than if tape assignments were speci-
fied internal to the program; however, the system has
greater applicability through use of this scheme. By user
discretion, certain key data can be stored on tapes that
will be saved after coinpletion of computations on the
computer. These data are then available for subsequent
runs, thus avoiding complete regeneration of data. For
example, in a structural problem the summed stiffness
matrix should be saved if any one of the following con-
ditions is suspected: A nonrecoverable error might occur
in calculations that follow the generation phase, and com-
putations are terminated by the computer; a few elements
of the structure are likely to be redefined subsequent to
current calculations; or additional loading states are likely
to be defined subsequent to current calculations. Another
advantage in assigning tapes is that the program is made
amenable for operation on different computer systems
and is operable when one or more tape units are removed
from the system for repair.

In assigning data storage tapes in a pseudo instruction
program, it is efficient to store data on a number of tapes
rather than on one or two. The reason is that a search of
a tape for particular data is reduced if the number of data
groups on the tape is small. In the JPL computer system,
seven tapes are available for data storage during program
execution (Fig. 7). For the moderately long problems that
have been run to check out the SAS program (20 to 50
pseudo instructions), three to five tapes have been used
in which one or two of these were saved for recovery
purposes.

For a given computer complex, if an adeqmite number
of tapes are available, then the SAS program library (17
subprograms) should be divided onto two or more tapes
to reduce search times. For example, the JPL computer
system has 18 tape consoles, so that two tapes are avail-
able to store the SAS library (Fig. 7, tapes A4 and B5). At
program initiation, the Master Intelligence System is read
from one of the SAS library tapes into core, at which time
it takes control of the computer to perform functions
already described. The disk file shown in Fig. 7 is used
to store the computer systems library, which, however, is
also currently stored on tape A3 as a backup. Eventually
the entire SAS program will be adapted to disk storage,
since by this mode of data storage, search times are
reduced greatly over those for magnetic tape.

Because of the sequential nature of the calculations
characterized by the pseudo instruction program, it is pos-
sible to restart calculations at any point in the pseudo
program provided the data generated to this point have
been stored on tape. This feature of the SAS is termed
the “recovery feature” and is predicated upon the writer
of the pseudo instruction program planning, in advance,
recovery points based upon likely locations for errors in
the calculations. To support this feature, instructions may
be given to computer operators to save certain tapes and
then to remount these tapes the next time the program
is run.

Related to recovery is the recoverable error option. In
the SAS, it is possible to set up a matrix calculation and
provide alternate calculations if the matrices are actually
larger than core. When too large a matrix is found a
recoverable error occurs. The recoverable error option
allows for shifting from the subprogram for in-core cal-
culations to the subprogram for larger-than-core calcula-
tions without stopping the calculations and resubmitting
the problem. This error option could have been auto-
mated in the program by action based upon the result
of a test on matrix size; however, because of the sacrifice
in core space and the infrequent occurrence of matrices
of sizes bordering on core capacity, error recovery was
made a user option.

The recoverable error option is also important when
several problems are stacked for one run on the computer.
By use of this option any error in an early calculation will
not terminate calculations in subsequent problems.

Having given a descriptive summary of the functions
and operation of the SAS program, we now present a
summary of the capabilities of the system.

6

~~

JPL TECHNICAL MEMORANDUM NO. 33-220

odj LIBRARY

Y z
U m
f
v)
I- z w
I
2
(3

UJ
v)
U

w

I-

-

n a

TO ALL ROUTINES
(526 WORDS)

I N PUT

OUTPUT

SYSTEMS
LIBRARY

STORAGE

STORAGE

STORAGE

I

INTER-
MEDIATE

INTER-
MEDIATE

PUNCH
OUTPUT

PSEUDO
PROGRAM

LIBRARY

STORAGE

STORAGE

STORAGE

Fig. 7. Core, disk file, and tape assignments of SAS on the JPL computer (IBM 70941

7 1

JPL TECHNICAL MEMORANDUM NO. 33-220

111. CAPABILITIES OF THE SAS PROGRAM

As indicated in Section 11, the SAS program performs
two basic operations, namely, generation of structural
data and manipulation of data in matrix format. Since
these two functions are mutually exclusive they may be
considered separately in defining system capabilities. First
we will consider the “generation phase” of the SAS.

The program was originally planned to analyze com-
plex shell structures; therefore, emphasis was placed on
developnient of a flat triangular shell element applicable
for idealizing shells. However, a structure requiring ideal-
ization by triangular elements can also have other ele-
mental members such as stiffeners or flanges, so that
several additional elements have been added to the SAS
library of elements. Thus, the BILD subprogram can gen-
erate structural data in matrix format for several struc-
tural types, retaining, in the process, consistent node
identification so that the elemental matrices may be super-
imposed to provide a representation of the composite
structure. The characteristics of each of the elements
in the SAS library may be summarized as follows (Fig. 3):
The beam-bar-torque tube element can have arbitrarily
shaped cross sections, provided the shear center and/or
twist center are coincident with the principal longitudinal
geometric axis. This element representation optionally in-
cludes the effects of shear deflection and rotary inertia,
and each element can be supported by any of several
types of end constraints. The “shear-beam” element dif-
fers from the beam element by a loading state that
includes a shear stress distribution along the length of
the beam at one outer surface. This element representa-
tion incorporates a coordinate transformation so that the
axis of bending is parallel to, but need not be coincident
with, the principal geometric axis of the element. Thus,
this element models the behavior of a nonsymmetric
stiffening member.

The triangular-plate element can represent a structure
having aeolotropic material properties (13 independent
constants in the constitutive equations), varying elastic
moduli with temperature (interpolation and extrapolation
of a material properties table), and varying thickness
and/or density properties. A restriction on this element
representation when the material is nonisotropic is that
the principal material axes must align with prescribed
geometric axes unless a transformation of the constitutive
equations is made prior to use in the SAS program. The
triangular element can be used in representing laminated
or layered multidimensional structures.

The conical element which is derived in Ref. 6 is used
to analyze shells of revolution when the loading on the
shell can be prescribed by a truncated Fourier Series.
Orthotropic materials may be analyzed, provided the
principal material axes align with the principal geometric
axes of the shell. The effects of shear deflection and rotary
inertia can be included in analyses with this element.

In generating the structural data by use of BILD, the
stiffness and loading matrices are read onto tape in 127-
word blocks (120 words of data and 7 words of identifi-
cation) so that the core of the computer is not filled.
Therefore, theoretically any number of individual ele-
ment matrices can be generated; however, an upper limit
has arbitrarily been set at 999 elements in a single pass
since this is the limit of assignable matrix numbers.

Equivalent node forces are computed internal to the
program for the elements in the SAS library when sub-
jected to temperature gradients normal to the neutral
axes, temperature distributions, uniform accelerations,
and/or pressure loads. This system capability eliminates
lengthy manual calculations to define node forces due to
these types of loads. However, individual equivalent node
forces may also be input to the system if the analyst
desires to augment or change the structural loading.

The generation subprogram BUKL provides capability
to generate a prestress matrix for certain of the elements
in the library (see Fig. 4). After superpositioning, the
resultant matrix is used in the computation of the funda-
mental buckling mode of the structure. The link POWR
facilitates calculation of the first buckling load and mode
when the variable band matrix fits in core.

It is important to recognize that program restrictions
on types of structures that can be analyzed is due only
to the types of elements contained in the program library.
Provision has been made for adding elements to this
library without serious revamping of the subroutines in-
volved. For example, the input and output data formats
are sufficiently general to accommodate a wide variation
in possible element format requirements. Additional in-
formation on the current library elements and on the
functions and capabilities of the subprograms BILD and
BUKL may be found in Ref. 3.

8

J P L TECHNICAL MEMORANDUM NO. 33-220

The capabilities of the manipulative subprograms of the
S.4S are probably of more general interest than those of
the generation phase because the manipulative function
is not restricted to structurally oriented problems. Some
indication of subprogram manipulative capabilities is
given in Fig, 5 by the labeling of the subprograms as to
in-core or larger-than-core operation; however, additional
information is given below for the basic manipdative
subprograms including certain restrictions and applica-
tions. First it should be noted that, as indicated in Fig. 7,
20,000 words of storage are available in core for general

6. Addition and Subtraction Subprogram
(ADDS, SUBS)

This subprogram provides capability to add or subtract
matrices in which neither matrix need fit in core. The ma-
trices need not be square nor must codes of the two
matrices necessarily match. Serial addition and subtrac-
tion is arbitrarily limited to 999 matrices similar to multi-
plication.

C. Transposition Subprogram fFLIPI
computational useage with the 32 K core machine. Hence,
the order of the largest square matrix having all non-
zero element values that can be placed in core is
v%@G= 141. In structural problems a matrix of this
size is rather small so a matrix coding technique, de-
scribed in Section I\', was adapted to increase the capa-
bility of in-core computation. Thus, the information given
below for each manipulative subprogram assumes the
matrices are coded unless othenlise stated.

A. Multiplication Subprogram fMULTl

This subprogram multiplies two matrices together
where one of the two must fit in core. The multiplication
is performed by code matching so neither matrix need
be square or identically coded with the other. If none
of the row and column codes matches then the product
is a null matrix. A simple example of the multiplication
process is shown in Fig. 8.

Virtually any size matrix can be transposed by this sub-
program because the operation involves only interchang-
ing the row and column codes of each element then
relisting of the array. In a single pseudo instruction only
one matrix can be transposed; however, a serial transpo-
sition option is not needed because the transposition is
generally performed after summing or forming products
of matrices.

D. Special Multiplication Subprogram (WASHI
One function of this subprogram is to partition (with

attendant element scaling if required) a matrix, say [M I ,
by row and column. This is accomplished by forming a
matrix triple product [TI [M I [T I , where the matrix
[TI is diagonal having either zero or nonzero (unity if
no scaling is required) valued diagonal elements. The
parent matrix [h l] must fit in core; however, it need not
be symmetric or square.

This subprogram can also multiply together uncoded
matrices; however, the matrices must both fit in core
simultaneously. Another option of this subprogram is
serial multiplication in which up to 999 matrices (arbi-
trary limit) may be multiplied together by a single pseudo
instruction. row-column partitioning.

A4dditional functions have been incorporated in this
subprogram to allow numerical scaling or extracting of
elements of [MI. This operation is performed by element
code matching between [MI and a control matrix. The
parent matrix [U] is restricted in this operation as in

u) 1 ' w

12
5 a

15

17

e b O O

o o c o

O O O d

-

COLUMN CODES
I I 16 23 24 II 16 23 24

O O i O

34 o o o i

32 L X

Fig. 8. Illustrative multiplication operation

ef+bg eg+bh 0 ek

0 0 0 0

9

E. Choleski Decomposition Subprogram fCHlNl where

The purpose of this subprogram is to define a matrix
which, when multiplied by its transpose, equals the origi-
nal matrix. The particular form of these matrices is: one
matrix has nonzero diagonal and upper off-diagonal ele-
ments, and the second is the transpose of the first. That is,

where [0 \ U] is the upper triangular matrix, and
[0 \ U] " = [U \ 01 is the lower triangular matrix. The
advantage in finding the matrix [0 \ U] in triangular
form is that it can be inverted very simply compared
to inverting matrix [MI directly. Once the inverse of
[0 \ U] is found, the inverse of [MI is determined by
multiplication, that is,

where [0 \ U] is the inverse of [0 \ U].

This subprogram is limited to symmetric, positive defi-
nite, square matrices. Because of the symmetry condition,
only the diagonal and upper off-diagonal elements of [MI
must fit in the core of the computer in variable band
form.' Thus, matrices whose complete array is larger
than core can be manipulated; however, there is a defi-
nite upper limit on matrix size based upon the number
of elements in the upper triangular region and on the
diagonal. For example, the matrix of the largest order that
can be manipulated by this subprogram is 6,666, in which
only the diagonal elements are nonzero. Any matrix hav-
ing nonzero off-diagonal elements must be of lesser order
than 6,666 to fit in core.

A typical application of the decomposition function is
in solving the dynamic matrix equation. The fundamental
form of the equation is:

where, in general, the matrices [MI and [K] are square
and symmetric. By means of the CHIN subprogram we
can decompose the stiffness matrix to obtain:

J P L TECHNICAL MEMORANDUM NO. 33-220

~

'Assuming symmetric matrices the bandwidth of a row is merely
twice the number of locations between the diagonal element and
the last nonzero off-diagonal element. In general, the row-band-
width values should be made minimal to reduce calculations and
provide for handling of larger order matrices (see Section V).

1 0

We now define a modified deflection vector as:

or

(6:) = [
which when substituted into the dynamic equation yields

(6*} = '[o\" p:)
[MI[o\" I-' O J 2

Premultiplying this equation by [0 \ U] - I T , we obtain

[o\U]-lTIM] []-'{6*} = a 1 [I1 (6":)
w-

where [I] is the identity matrix. The advantage in decom-
posing the stiffness matrix in the above example is that
the matrix triple product [0 \ V] - l T [M I [0 \ U] -l yields
a matrix that is symmetric, provided [MI is symmetric.
Insuring a final matrix that is symmetric allows subse-
quent use of more efficient mathematical techniques for
finding the roots and vectors in solving the problem. The
alternative to the above approach is to form the matrix
product [K] - [M I which is not symmetric.

F. Simultaneous Equution Solution Subprogram
ICHOL, IT€RI

The CHOL subprogram uses the Choelski triangular
decomposition technique incorporated in CHIN to solve
a set of simultaneous equations. The basic operation is
outlined as follows. Given a matrix equation with (6) the
unknowns :

[KI (6:) = {PI

the CHOL subprogram calculates the solution as

where the inverse of [K] is found by the decomposition
procedure.

Limitations on the calculation are that the [K] matrix
must be square, positive definite, and symmetric. Because

JPL TECHNICAL MEMORANDUM NO. 33-220

of the symmetry condition only the diagonal and upper
off-diagonal elements are read into core (in variable band-
width) so the total [K] matrix can be larger than core.
A follow-on phase of the contractual work is to develop
this subprogram for operation on matrices that do exceed
core capacity, by performing the necessary calculations
sequentially so that the problem of filling core is not a
factor.

The ITER subprogram also solves the equation
[K] {S} = {P} but uses the Accelerated Seidel Iteration
Method. Limitations on this method are that [K] must be
square, positive definite, and have nonzero diagonal ele-
ments. However, the matrix [K] need not fit in core nor
be symmetric. Therefore, the ITER subprogram is capa-
ble of solving a more general class of equations than
CHOL, but the computational time for ITER is generally
significantly greater than that for CHOL.

Basing the capacity of the programs on the size of [K]
is not expressing the true limitation of the system. This
can be demonstrated very easily. Assume the storage re-
quired for the diagonal and upper off-diagonal elements
of [K] exceeds core. A procedure called partitioning can
be used effectively to allow use of the CHOL subprogram
in preference to ITER. The original matrix equation to
be solved is

[KI (81 = {PI

Assume this equation is partitioned into two equal parts
as follows:

[K, , K,,] { S 2 f - (P 2 , f

This arrangement is actually an array of two matrix equa-
tions, namely:

Kii Ki, S i 1 - Pi1

Solving the second equation for (8 ,) yields

Substituting into the first equation gives

In this equation [K] is of the same order as [K,,] and
[K2J which are one-half the order of the original ma-
trix [K]. Thus, CHOL can be used to determine [K,,] -I,

then to solve the final equation for (8,) by inverting [XI.

Thus, it is apparent that by the method of partitioning,
matrix equations that exceed core storage capacity can
be solved; however, several matrix manipulations must
be performed in place of one.

G. Root Subprogram (ROOTI
The function of this subprogram is to determine the

characteristic roots (A) and associated eigenvectors { S }
from input of the matrix [R], where [R] is defined by

[[a - rzl] {a> = (01

Referring back to the derivation of the dynamic equation
outlined in the CHIN description, it may be concluded
that

and

The algorithm used in this subprogram is Jacobi's Method
in which requirements on the input matrix [R] are that
it be square, symmetric, and of order 130 or less.

H. Second-Order Differential Eguution
Subprograms (LOCI, DEQSJ

Consider a second-order matrix differential equation
of the form:

The subprograms LOCI and DEQS operate with rh is
form of equation in two distinct ways. The function of
the subprogram LOCI is to determine the change in value
of the roots of the homogeneous equation ({P} = (0))
under some parameter variation. Any parameter in any
two of the three matrices [A], [B], or [C] can be varied
arbitrarily. The information found by the LOCI subpro-
gram can be interpreted as the transfer function of the
system described by the second-order equation.

The function of the DEQS subprogram is to solve digi-
tally the second-order equation when the forcing function
is nonzero. Several functional forms can be selected for

11

JPL TECHNICAL MEMORANDUM NO. 33-220

the forcing function including the step, ramp, or sinus-
oidal types. In addition, an arbitrary forcing function can
be input by representing the time history of the force by
a sequence of impulses (Fig. 9). The forcing function can
be an actual force, or a specification of defined displace-
ments, velocities, or accelerations acting on the system.
Both the LOCI and DEQS subprograms are limited to
matrices of 40th order or less. The Muller method is used
to isolate the roots in the LOCI subprogram, and the
Runge-Kutta method is used to perform the integration
in the DEQS subprogram.

1. Root Extractor Subprogram IPOWR)
This subprogram uses the power method to determine

the fundamental root and associated vector of a square,

symmetric matrix. The matrix is limited to in-core sizes
in the sense that only the diagonal and upper off-diagonal
elements in variable bandwidth must fit in core. The
principal use of this subprogram is to determine the
fundamental buckling mode characteristics, or the funda-
mental eigenvalue and eigenvector in a dynamic calcu-
lation.

These subprograms comprise the basic manipulative
package of the SAS program. All are limited to calcula-
tions with linear systems, and, except for LOCI and
DEQS, all involve only real algebra. The algorithms used
in each subprogram are considered efficient for applica-
tions on digital computers and each is documented com-
pletely. It is worth noting also that although these
subprograms have certain limitations and restrictions, by

I
h

Fig. 9. Discretization of nonharmonic force

TRIANGLE
N:&ER /- NUMBER

I

Fig. 10. Triangular grid array for quarter shallow shell

12

-

2.86 ~ ' .

O0

I \

Fig. 1 1 . Triangular array of 20-de9 shell sector

JPL TECHNICAL MEMORANDUM NO. 33-220

judicious use of symmetry conditions, partitioning tech-
niques, structural idealization tradeoff s, etc., these con-
straints can be circumvented in many problems to obtain
accurate solutions.

System capability is refiected also in the time expended
in solving a typical problem. Information is in process of
being compiled on operation time versus data size for
each of the subprograms of the SAS; however, at the time
of this writing the compilation is not complete. Some indi-
cation of program time-of-operation capability can be
given by citing the observed results of the Phase I test
problem, which included both a static and dynamic calcu-
lation. The dynamic calculation involved finding the flex-
ural natural frequencies of an unconstrained shallow
spherical shell. In the setup of the problem it was rec-
ognized that the low frequency modes possessed a sym-
metry property that allowed analysis of only one-quarter
of the shell. This sector was idealized by 38 triangular
elements having 54 discrete nodes, resulting initially in
a st ihess matrix of order 324 (Fig. 10). The time used
to generate the stiffness and mass matrices and s u m these
was approximately 2.5 min. Imposition of boundary con-
ditions, transformation of matrices as depicted in the
CHIN description, inversion, determination of eigenval-
ues and eigenvectors, and inverse transformation of the
vectors required 30 min. Of this time, 5 min were used
in determining the roots and vectors of an 88th-order

matrix, 5 min were used in inverting a matrix of 191st
order, and significant time was used in required pre- and
post-multiplication operations. In this computation 24
pseudo instructions were executed.

The second calculation of the test problem involved the
computation of deflections and stresses for the same shal-
low shell used in the dynamic calculation except its outer
edge was clamped. The loading conditions and shell ge-
ometry are defined in Section V. The triangular grid array
selected for the shell is shown in Fig. 11. This array has
70 nodes, so the initial stifFness matrix order is 420. The
generation of s&ess and loading matrices and subse-
quent summation of these matrices for the 108 triangles
required 3.0 min. Solution of the system of simultaneous
equations and computation of stresses required 20 min.
Solution of the simultaneous equations, which were of
order 307, required 6.0 min to complete.

Subsequent to the running of these problems several
modifications have been incorporated in the SAS to im-
prove its time efficiency in certain areas. For example,
major changes have been made to the M ULT subprogram
to reduce its overall operation time. In addition, modifi-
cations to ADDS, SUBS, SORT, CHOL, CHEX, ROOT,
'IT'ASH, and BILD are either in process or are planned
to increase their capabilities.

13

JPL T E C H N I C A L M E M O R A N D U M NO. 33-220

IV. REVIEW OF OBJECTIVES IN PROGRAM DEVELOPMENT

A. Techniques of Achieving a "6alanced" Program

The word balanced is used here to imply development
of a computer program that possesses equality in level of
performance in the areas of complexity of the problems
that can be solved, the time expended in computations
and data handling, and the accuracy achieved in the
results. In a contractual sense, expressing this condition
by explicit constraints is very difficult to do except to set
guidelines to dissuade strong effort in one area with
obvious disregard for other of the major problem areas.
It is felt that this balance of operations, so difficult to
assess except by observation of the final product, has been
achieved in the SAS program and is a definite credit to
the developers of the program.

In initial definition of program development objectives,
deciding upon the level of problem complexity was not
difficult because of several natural limits. First, consider-
ing the triangular element, it has six variables per node
(as compared with two for a planar beam element), so
that any significant problem will entail use of a large
number of variables. Hence, it was established that the
program would be designed to solve, efficiently, structural
problems in which the stiffness matrices varied from
100th to 2,500th order. For matrices smaller than 100th
order the calculations can be performed easily in-core, for
which many structural analysis systems are available. For
matrices larger than 2,500th order, the capacity of present
computer systems is probably exceeded, in that the time
required for problem solution becomes excessive and
accumulating errors are likely to destroy all accuracy.
Hence, the SAS is designed to handle what may be
termed intermediate-sized matrix problems.

Within these constraints on size, core capacity may be
exceeded in a single calculation; hence subprogram logic
must be formulated for in-core as well as larger-than-core
calculations. When core is filled the only way to account
for remaining data is to use auxiliary storage. It is well
known that when auxiliary magnetic tape storage is
coupled with in-core calculations the computational time
increases significantly because of tape search and read
times. However, presently, there is no alternative but to
use this storage option so the time for operations must be
minimized within this constraint.

In the SAS, time minimizing is achieved by performing
tape search and rewinding operations on as near a non-

interference basis as possible consistent with the JPL
computer system. Every advantage has been taken of
current computer capabilities to minimize tape sequenc-
ing; however, this remains a major contribution to total
computational time. Within the limitations of the present
computer system the tape problem could be alleviated by
writing an independent computer monitor system, specif-
ically adapted to the SAS. However, this approach is not
compatible with job sequencing practices at the JPL
computer center.

Fortunately the developers of computer hardware rec-
ognize that this tape-core flow problem is a major limita-
tion on computer performance. Consequently, they have
introduced several new components and a new monitor
system to increase storage capacity and decrease data
access time. Disk filing reduces data access time and
increases storage capacity, and the FORTRAN IV mon-
itor system allows for tape reading and writing while
calculations are performed in-core (buffering). These im-
provements are not yet used in the SAS program, but
when they are incorporated, operation and computation
times will be reduced significantly. In planning for even-
tual conversion of the SAS to new monitor systems, the
developers have used the FORTRAN language (rather
than machine language) in approximately 95% of the SAS
subprograms. This strong emphasis on FORTRAN is jus-
tified not only by the increased simplicity of adapting
the program to different monitor systems, but also by the
ease of interpretation of subprogram functions by a user
not completely familiar with the program.

In addition to flow problems from subprogram to
subprogram, and between core and tape, consideration
was given to minimization of the quantity of data manipu-
lated. Stiffness matrices, coordinate transformation ma-
trices and mass matrices are by nature sparse matrices,
having considerably more zero-valued off -diagonal ele-
ments than nonzero values. Therefore, it is efficient both
in core utilization and in input data preparation to ignore
the zero-valued elements. Ignoring zero-valued elements
cannot be achieved easily using index incrementing tech-
niques which operate with complete matrix arrays. How-
ever, it can be accomplished by assigning to each nonzero
element a separate code that identifies the element by
row and column. By this technique two words are needed
for each matrix element (code and value), but since the
matrices are sparse, the result is a net reduction in core
storage used per matrix (Fig. 12). Basically, matrix algebra

1 4

JPL TECHNICAL MEMORANDUM NO. 33-220

2 I I
n
0
0 12

K 13

COLUMN CODES
I I 12

0 b

b C

0 0

(a) MATRIX ARRAY AND CODES

I I I I a I I 12 b 12

13

0

0

d

I1 b

Computer operation time may be reduced also by mini-
mizing the number of times a given amount of data is
handled. In attempting to reduce the data handling time
it became evident that mathematical partitioning rather
than structural partitioning was more efficient. Structural
partitioning involves grouping data by row and column,
each group representing a segment of the structure. In
structural partitioning the operations are reflected in the
pseudo instruction program, which becomes very large.
When this happens tape search times become a significant
factor in reducing program efficiency.

12 12 C 13 13 d

(b) CODE LISTING OF MATRIX

Fig. 12. Illustration of matrix coding technique

is camed out by "code matching," so that overall dimen-
sional compatibility of matrices is not required. For
example, in matrix addition, elements of each matrix
with matching codes are added while the remainder of
elements with nonmatching codes are relisted in the
summed matrix (Fig. 13). Although this coding technique
may seem to require considerable bookkeeping effort, the
codes can be made up of identifying numbers that cor-
respond to deflections or forces at nodes of the structure,
so that code interpretation is apparent. In matrix prob-
lems not associated with structures, a rational coding sys-
tem must be defined for easy identification; this, however,
is not a difficult task.

The quantity of input data can be reduced by defining
several optional coordinate systems that the user may
select. For example, in a plate problem, coordinate axes
with two axes in the plane of the plate reduce the geom-
etry input data by one-third because only two coordinate
values, instead of three, are needed to define the location
of a node. This advantage does not exist, however, when
analyzing doubly curved shells.

II 12 I2 15
I I 12 15

r 1

L 1

Fig. 13. Matrix addition using coded elements

Mathematical partitioning is accomplished by data
handling techniques incorporated in each subprogram.
This technique evolved from the condition that the sub-
programs manipulate matrices that either fit in-core or are
larger-than-core. Basically, this technique involves par-
titioning of groups of data by row only, which is con-
sidered mathematical because no structural interpretation
can be given. Since this operation is internal to the pro-
gram, the user is unaware of the partitioning, so is not
burdened with any data identification problems.

In considering program accuracy, it must be recognized
that insuring accuracy over a wide spectrum of problem
types and sizes is a difficult task. This fact was recognized
at the onset of development of the SAS program, and
considerable effort went into determining the possible
errors that could occur and rational means of reducing
them. A complete description and summary of the work
done on error recognition and reduction is given in Ref. 4;
hence, only a brief summary is included in this report.
Basically five categories of errors are defined in Ref. 4,
and each type is described briefly in following paragraphs.

One major source of error is human mistakes in prepa-
ration of input data, which may be designated input
error. In preparing data for complex problems, there is
generally considerable input of a repetitious nature, which
is a situation conducive for errors. Fortunately, this type
of error can be virtually eliminated by use of an input
data diagnostic subprogram. The function of this sub-
program is to check element data format, input matrix
size and format, pseudo instruction format and tape as-
signments, and overall compatibility between these pack-
ages. A subprogram to perform this function has been
developed for the SAS, and is designated the CHEX
subprogram. This subprogram has also been coded to be
operative as a separate diagnostic package on the IBM
1620 computer with disk filing. This provision allows the
checkout of input data decks at reduced cost on the
IBM 1620 before submitting the problem for solution on

15

JPL TECHNICAL MEMORANDUM NO. 33-220

the IBM 7094. The CHEX subprogram is a single or, in
some cases, a two-pass system that detects most major
errors in an input data deck and prints out appropriate
comments that indicate each error made.

A quite different effort was devoted to reduction of
error in structural representation. The stiffness method
when applied to analysis of shell-type structures is an
approximate method, in that the triangular element
that represents the local structure is not an exact repre-
sentation. For example, for the flat-plate-triangular-
element used in the SAS, establishing continuity of
deformations between elements requires the use of linear
displacement functions which, however, will not allow
exact representation of the bending mechanism. Also,
internal forces in the structure are determined (lumped)
only at the nodes of each triangle, so the exact distribu-
tion of forces within the element is not known, and an
averaging technique must be used to define stresses. Other
factors that influence this approximation are force equi-

type of error, namely, that the triangular element is not
exact in representing local structure, is termed discretiza-
tion error.

I librium, stress continuity, and field compatibility. This

Means of reducing this type of error in the SAS cen-
tered on deriving an adequate triangular element repre-
sentation. The scope of this task was not fully recognized
at the start of development, and three distinct element
representations were generated before an acceptable
model was determined. A further complication was the
condition that any element representation could not be
evaluated until the generation package, as well as most
of the data manipulative subprograms were functional
and checked out.

The only means of reducing discretization error is to
derive a better element representation than the one used.
Thus, reduction of this error is contingent upon theoreti-
cal developments in the field of the finite element method.
In anticipation of likely theoretical developments in finite
element representations, the format of the generation sub-
program has been set up so that element changes and
modifications can be incorporated easily. The triangular
element representation now used in the SAS is derived in
the Program Technical Document (Ref. 4).

A third category of error, termed idealization error, is
related to the manner in which the actual structure is
idealized by the finite element array. In general, to mini-
mize this error, the finite element breakdown should be

coarser in regions where variables (deflections, curvatures,
forces) change slowly and finer in regions where variables
change rapidly. Orientation of triangles at boundaries,
with respect to material and stress axes, and in regions of
concentrated loads are other factors that should be con-
sidered in defining the triangular array. Hence, it is appar-
ent that much of the control of this error is a function
of the initial problem setup, which is predicated upon the
knowledge and experience of the user. A potential user
might argue that as the grid size is reduced the repre-
sentation approaches an exact one, and accurate answers
are assured (Fig. 14). However, there are two conditions
on this argument. First, if the grid size is reduced, the
amount of input data increases and the sizes of matrices
that must be manipulated increase possibly to an extent
that the calculations exceed current computer capability.
Second, when the matrices become large, the number of
manipulations increases, and an error develops that is
inherent in any repetitious calculation; namely, round-off
error. This error is called the manipulative error and is
the fourth type reported in Ref. 4.

The manipulative error is basically a function of the
conditioning of the matrices being manipulated, the
mathematical procedures used in each subprogram, and
the accuracy limits set on the computer. In the SAS pro-
gram, due to operating time constraints, the accuracy
limits have been established at eight places or what is
termed “single precision” accuracy of the computer. The
mathematical procedures used in the various subprograms
of the SAS are based upon mathematical algorithms that
are known to be efficient in computer applications. With
regard to matrix conditioning, in structures problems, con-
ditioning is normally good because of high attenuation in
structural coupling. This effect results in matrices that
are “near diagonal,” that is, only the off -diagonal elements
near the main diagonal are nonzero, and are numerically
less than their respective diagonal element values. Since
the question of matrix conditioning depends upon the
particular characteristics of individual matrices, it is

(a) COARSE GRID (b) FINE GRID

Fig. 14. Structural idealization

1 6

JPL TECHNICAL MEMORANDUM NO. 33-220

difficult to establish methods of correction when ill-
conditioning is encountered. In many cases, ill-condition-
ing is due to the element breakdown selected to represent
the structure; hence a corrective measure is to reidealize
the structure rather than consider changing any of the
manipulative operations.

The fifth error classification is called interpretation
error and is associated with the problem of interpreting
the output or results of computations. Visualize, for a
moment, preparing a large amount of input data for an
extremely complicated problem, then feeding this data
into the computer and half an hour later obtaining some
answers. The question is now-how good are these an-
swers? If approximate or estimated answers are not
known from another source, then this question is not easy
to answer. However, there are at least four controls that
may be applied to interpretation of the results. First, the
past experience of the program user may be helpful in
establishing an “intuitive feel” for the range of answers
expected. Second, equilibrium or orthogonality checks
may be run to establish the validity of the results. This
can be done readily by simply altering the pseudo instruc-
tion program. Third, the problem can be rerun with a h e r
or coarser element (triangular) grid to check convergence
of the solution with the possibility of extrapolating the
limiting answer if several solutions are obtained. Fourth,
if an energy approach is used to define the mathematical
model of the finite element, then in some cases potential
and complementary energy approaches can be taken in
which the answers obtained by the two approaches
bracket the correct answer for the idealized structure.
This procedure is called “the bounding technique” in
finite element applications, and its use is predicated upon
a rational energy approach being used to derive the
mathematical model of a structural element. The bound-
ing technique has been applied successfully to simple
problems (Ref. 7), but remains a basic developmental task
for complex elements such as the triangular element. At
present, in the SAS, the first, second, and third control
measures can be used to interpret results. The fourth
control measure, the bounding technique, is being consid-
ered for a follow on effort after more information and
experience is gained in using the program developed in
the earlier phases of work.

5. Methods of Achieving Program Versatility

Reference has already been made to the modular or
chain approach being coupled with the pseudo instruction
program to form the basis for a flexible computer pro-
gram. The ability to solve a wide spectrum of problems

is reflected in this form of flexibility. One extreme in
program applicability is that a “black box” approach can
be taken if the user is always solving a particular type of
problem. The setup for a program of this type involves
establishing first an efficient sequence of pseudo instruc-
tions. Some error instructions as well as planned recovery
points need to be included to allow for size variations in
input data and recovery from computer terminating
errors. Once the program is set up and checked out the
ultimate user is merely instructed on input-output writeup
and interpretation, and recovery procedures. With this
approach the user is not required to know matrix algebra
even though matrices may be required input. In the SAS,
because the ma^ coding system is related to the struc-
tural idealization, the input matrices take on the appear-
ance of tabulated data so that interpretation is possible
without explicit use of the word “matrix.” The output data
is also printed in tabular form so that an understanding
of the meaning of the codes that accompany each element
value is sufficient for interpretation.

The other extreme in program usage is in the solution
of the general matrix problem. Applicability of the SAS
to solve general problems is contingent upon the functions
performed by the manipulative subprograms. Hence, the
user must be familiar with matrix algebra and the options
and capabilities of the SAS subprograms. This informa-
tion is provided by complete documentation of the manip-
ulative functions in the Program Usage Document (Ref. 3)
and of the mathematical algorithms in the Program Tech-
nical Document (Ref. 4). By means of this option, prob-
lems in any discipline may be solved using the SAS,
provided the solutions can be effected using matrix
algebra.

Options in required input data are another aspect of
program flexibility and center on the capability of select-
ing coordinate systems that are compatible with the
program being solved. In addition to latitude in selecting
the coordinates to d e h e structural geometry, other
coordinate system options are:

1. Selection of elastic axes when working with moniso-
tropic materials.

2. Specification of local coordinates for elements along

3. Selection of coordinates along which deflections are

These coordinate options in the SAS are important in
different problems and each may be used in accord with
user preference or problem constraints.

which stresses are referenced.

referenced.

17

JPL TECHNICAL MEMORANDUM NO. 33-220

The ease of incorporating extensions and modifications
into the SAS program is also an important form of system
flexibility. Basically there are two areas where this form
of flexibility is needed. First, the modular format of the
program library allows for addition of new subprograms
by merely identifying the program in the master intelli-
gence system for pseudo instruction interpretation, and
assigning a chain number to the subprogram for locating
it on the library tape. The other area where expansion is
likely is in the generation subprogram library of stiffness
elements. Expansion problems in this area center on
changes in the input data. However, the input data
format of the SAS has been planned and set up so that
any type of element, including the three-dimensional
solid, can be put in the library without any format
changes.

C. Methods of Insuring Program Reliability

The type of reliability of concern here is that associated
with the functioning of the entire program. Since a com-
puter program is merely a set of instructions that the
computer is slave to follow, once all of the logic and flow
options in the instructions have been tested and proven
to be correct, reliability is assured in the sense that a
submitted problem will be properly executed. The only
variants are then the validity of the input data and the
functioning of the computer itself, which occasionally
errors, for which the recovery feature is designed to
accommodate.

For large programs with numerous flow patterns and
options, such as the SAS, checkout is an extensive effort.
In the checkout of the SAS, three levels of problems were
generated and run. The function of the first level of prob-
lems was to establish the rationale of the logic within
each subprogram. Next, with the subprograms grouped
in a chain library, the second level of problems checked
the compatibility between subprograms (in various se-
quences). Finally, because the program was designed to
manipulate large blocks of data that could fill and exceed
core, checkout of program capacity dictated the third
level of test problems. The test problem for this third level
of checkout was controlled by contract agreement.
The single problem that was to be run was formulated
and set up by JPL personnel with WDL approval and
supervision. The problem was run on the JPL computer
complex, and the results were subject to JPL approval.

It was recognized that one comprehensive test problem
could not be formulated that would check all options of
the SAS. Therefore, a support effort was planned and

subsequently integrated with overall program develop-
ment. This activity by JPL personnel was intended to
aid WDL in certain critical areas and orient JPL person-
nel on details of the program functions and operations.
In addition to the checkout effort already described, this
support function involved the following participation by
JPL technical representatives: weekly technical meetings
with WDL personnel to discuss any matters relating to
program development, review of technical and program-
ming documents as they were generated during develop-
ment, and participation in writeup of some of the key
subprograms of the SAS program. During this checkout
phase, JPL assigned from one to three engineers and one
programmer as needed to perform the various functions.
In review, it is felt that this support effort not only effec-
tively oriented the JPL technical personnel in understand-
ing the SAS program operation, but also it served as a
check and balance to increase the reliability and to speed
up the checkout of the program.'

Checkout of system manipulative subprograms pro-
ceeded with the normal types of errors causing difficulty.
Some of the program features were very useful in check-
out, particularly the recovery feature. Cross checking of
different subprogram outputs was used advantageously.
For example, the output from the subprograms used to
solve simultaneous equations (CHOL, ITER) was com-
pared to the matrix decomposition subprogram (CHIN)
by proper selection of the set of equations. Vector
orthogonality and matrix symmetry checks, core dump
and data tape analyses and other standard techniques
were used to check the logic and flow of the program.

The other phase of the program, the generation pack-
age, was the source of two fundamental problems that
impeded system checkout. These problems were the deri-
vation of an adequate triangular element representation
and the rational distributing of nodal forces over each
triangle to obtain accurate stress values. The problems
associated with the triangular element representation
were presented in Section IV. Although displacement

'Several activities have resulted from JPL's participation that com-
plement the primary work on program development. For example,
JPL documentation of the test problem input data and solutions
supplements the technical and usage reports prepared by WDL.
During program checkout, .additional small test problems were sub-
mitted by JPL personnel to verify the operation and flow of certain
program options not tested by the comprehensive test problems.
In having the opportunity to review the technical aspects of the
methods used in the SAS, JPL personnel have been able to initiate
supporting advanced development and research projects and to
better plan the direction that should be taken in extending and
improving the SAS program to meet future analysis needs.

1 8

JPL TECHNICAL MEMORANDUM NO. 33-220

values can be determined very accurately (Ref. 5), the
determination of accurate stresses is a well-recognized
problem in finite element methods, and for many element

types no exact procedure has been developed. In the SAS,
the stresses are average values determined by techniques
reported in the Program Technical Document (Ref. 4).

V. ROLE OF THE ENGINEER IN STRUCTURAL ANALYSIS APPLICATIONS
OF THE SAS PROGRAM

As is true in any compqter program a certain amount
of basic data must be supplied to the system to initiate
the generation and solution routines. Understandably,
since the elements used in shell-structure idealizations
are more complicated than, say, the beam elements used
in frame-structure analyses, the amount of input data for
the SAS exceeds that of corresponding frame analysis
programs. In fact, the beam, bar, and torque tube ele-
ments, which are types of elements needed in the analysis
of frame structures, are a part of the element library in
the SAS, and so constitute a fractional part of the total
input.

In general, the procedures involved in establishing
input for frame-type structures are well known, so in the
following discussion emphasis will be placed on the prob-
lems of input preparation for shell-type structures. In
setting up a shell-type problem for the computer, one of
the first tasks of the analyst is establishing a triangular
array that will adequately represent the characteristics of
the structure. This must be done within the constraints on
matrix size, and, consequently, may involve the use of:
structural planes of symmetry, local refinements in tri-
angular grid sizes, modal convergence techniques, mathe-
matical partitioning, and other methods to avoid bulky
manipulative operations. Once the triangular grid is
established, the next step is the numbering of nodes. This
is extremely important since the matrix row-bandwidths
are established by the nature of this numbering sequence.
In general, the optimal arrangement is that in which
adjacent nodes have node numbers that are close in
value. Procedures for testing the quality of particular
node numbering arrangements are given in Ref. 4. These
procedures have been defined thoroughly so that this
calculation can be performed by engineering-aide per-
sonnel. After the triangular grid and node numbering
sequence have been defined, the element input data can
be prepared, also by engineering-aide personnel.

The remaining tasks of the engineer are to select the ap-
propriate set of pseudo instructions and to write the vari-
able transformation matrices (in tabular form.) The
variable transformation matrices are used to impose
the boundary and symmetry conditions of the problem
and to eliminate any rigid-body modes. Several examples
of variable transformation matrices that were used to
solve the program test problems are given in Ref. 5.

The structural test problem of Phase I may be cited to
point out some of the considerations that should go into
setting up a problem for the SAS. The test problem was
to determine the deflections and stresses of a shallow
spherical shell that was clamped at its edge and subjected
to two loading conditions: a uniform pressure loading and
a thermal loading (Fig. 15).

Observing that the loadings are axisymmetric, hence,
the deflections of the shell will be axisymmetric, it is im-
portant to make use of this symmetry to reduce the
amount of input data. To subdivide a small sector of the
shell rather than the entire shell amounts to a significant

50'220 OF

10.6 in.

AMBIENT BEFORE
HEATING 7OoF

1-0.075 ii

P=50 psi

10.6 in.

AMBIENT BEFORE
HEATING 7OoF

(b) THERMAL (0) PRESSURE

Fig. 15. Pressure and thermal loading

1 9

J P L TECHNICAL MEMORANDUM NO. 33-220

reduction in the number of triangles used in the idealiza-
tion. However, if only a sector of the shell is idealized,
then symmetry boundary conditions (along its meridional
edges) must be imposed so that the influence of the part
of the shell that is removed is reflected in the behavior
of the sector.

In establishing the array of triangular elements, it was
recognized that deflections and stresses would vary con-
siderably more in the vicinity of the clamped edge than
in the central region of the shell. For the test problem,
a 20-deg sector of the shell was selected and was sub-
divided into the triangular array shown in Fig. 11. In
general, values of stresses are referenced to the center-
of-gravity of each triangle so that within the two-inch
region next to the clamped edge eight distinct sets of
stresses along the shell radius were determined.

Basically, the work involved in preparing the input data
for this problem consisted of:

1. Establishing the triangular array for which the co-
ordinate distances to each node were computed
based upon a given reference coordinate system.

2. Numbering the nodes (Fig. 11).

3. Describing the material of the shell including elastic
moduli, coefficient of thermal expansion, and mass
density.

4. Selecting appropriate boundary and symmetry con-
ditions and expressing these constraints in the form
of a variable transformation matrix (Ref. 5) .

This work, along with adapting the appropriate set of
pseudo instructions can be completed in two or three
days by an engineer and engineering-aide familiar with
the data formats.

The SAS program has been developed purposely to
possess the generality needed to incorporate many diverse

structural conditions; however, with this advantage comes
the disadvantage of a more complex input data format.
That is, versatility in computer applications implies use
of additional input specifications to accommodate the
various program options. Consequently, the analyst may
be required to supply more input data using the SAS
than whzt he may consider a minimal amount. A good
example of this is that a minimal input of elastic constants
might be Young's Modulus and Poisson's Ratio when the
material is isotropic. However, the stress-strain law used
in the SAS is general enough to represent an aeolotropic
material (13 elastic constant), so that the 13 constants must
be computed for an aeolotropic material as well as for
simpler material representations. However, for any given
material this calculation need only be performed once,
since these data can be retained in a material table which
may be used in all subsequent problems as required.

Finally, it is well to mention that the work involved
in preparing input data for a computer program such as
the SAS should be weighed against any alternatives of
finding solutions to the same accuracy by other methods.
For structural problems involving laminated or stiffened
structures, cutouts, concentrated or asymmetric loads,
local support conditions, and other non-obliging condi-
tions for closed form or numerical integration solutions,
the SAS or any comparable program is the only means of
obtaining approximate answers. Therefore, one addi-
tional task of the analyst is to dccidc if the problem to
be solved is appropriate for the SAS program or should be
solved using other methods or other computational tools
of a combination of all.

Convergence on minimal analyst effort is the goal of
most program developers, and it is anticipated that as the
SAS program is updated by conditions found through
usage, changes will be made that will refine and condense
the input-output format. However, within the framework
of a given computer system, input-output format can be
condensed only so far, since a certain amount of data must
invariably be supplied to the computer, which rates as a
computational tool and not as a knowledgeable entity.

20

JPL TECHNICAL MEMORANDUM NO. 33-220

REFERENCES

1. Hurty, W. C., and Rubinstein, M. F., Dynamics of Structures, Prentice-Hall, Inc.
Englewood Cliffs, N. J., 1964.

2. Gallagher, R. H., et al., A Correlation Study of Methods of Matrix Structural Analysis,
Pergamon Press, New York, N. Y., 1964.

3. Melosh, R. J., et al., Structural Analysis System Usage Report, Document No. WDL-
EM0763, Philco Corporation, Palo Alto, Calif., July, 1963.

4. Melosh, R. T., and Christiansen, H. N., Structural Analysis System Technical Report,
Document No. WDL-EM0264, Philco Corporation, Palo Alto, Calif., February, 1 964.

5. Long, T. E., Description of Test Problems for the Structural Analysis System Computer
Program, Jet Propulsion Laboratory, Pasadena, Calif. (to be published).

6. Percy, J. N., Pian, T. H. H., et al., Application of Matrix Displacement Method to
Linear Elastic Analysis of Shells of Revolution, AIAA, 2nd Aerospace Sciences Meet-
ing, New York, N. Y., January 25-27, 1965 (Preprint No. 65-142).

7. Melosh, R. J., Development of the Stiffness Method to Define Bounds on Elastic
Behavior of Structures, University of Washington, Ph.D. Thesis, August, 1962, Seattle,
Wash.

ACKNOWLEDGEMENTS

The author wishes to extend thanks to several individuals who con-
tributed extensively to the JPL support function in checkout of the SAS
program. These individuals are: Dr. C. Virgil Smith and Robert E.
Reed for their valuable evaluations in certain technical areas, and Lany
Schmele for programming contributions in subprogram development.

2 1

